身為一個熱愛美食、喜歡在城市裡挖掘驚喜的人,臺中公益路一直是我最常出沒的地方之一。這條路可說是「臺中人的美食戰場」,從精緻西餐到創意火鍋,從日式丼飯到義式早午餐,每走幾步,就會有完全不同的特色料理餐廳。
這次我特別花了一整個月,實際造訪了公益路上十間口碑不錯的餐廳。有的是網友熱推的打卡名店,也有隱藏在巷弄裡的小驚喜。我以環境氛圍、口味表現、價格CP值與再訪意願為基準,整理出這篇實測評比。希望能幫正在猶豫去哪裡吃飯的你,找到那一間「吃完會想再來」的餐廳。
評比標準與整理方向
這次我走訪的10家餐廳橫跨不同料理類型,從高質感牛排館到巷弄系早午餐,每一間都有自己獨特的風格。為了讓整體比較更客觀,我依照以下四大面向進行評比,並搭配實際用餐體驗來打分。
評分項目 | 滿分5分 | 評比重點 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 用餐空間是否舒適、有設計感、適合聚會或約會 |
口味表現 | ⭐⭐⭐⭐⭐ | 餐點是否新鮮、調味平衡、有無記憶點 |
CP值 | ⭐⭐⭐⭐⭐ | 價位與份量是否合理,是否值得回訪 |
再訪意願 | ⭐⭐⭐⭐⭐ | 整體體驗是否令人想再來、服務是否加分 |
整體而言,我希望這份評比不只是「哪家好吃」,而是幫你在不同情境下(約會、家庭聚餐、朋友小聚、商業午餐)都能快速找到合適的選擇。畢竟,美食不只是味覺的滿足,更是一段段與朋友共享的生活記憶。
10間臺中公益路餐廳評比懶人包
公益路向來是臺中人聚餐的首選地段,從火鍋、燒肉到中式料理與早午餐,每走幾步就有驚喜。以下是我實際造訪過的10間代表性餐廳清單,橫跨平價、創意、高級各路風格。
餐廳名稱 | 料理類型 | 價位範圍(每人) | 推薦菜色 | 適合族群 | 我的評價摘要 |
1️⃣ 一頭牛日式燒肉 | 和牛燒肉 | $1200~$1400 | A5和牛拼盤、 旬味野炊飯 | 情侶慶祝、燒肉愛好者 | 肉質頂級、陶瓷烤爐,沒有用木炭 |
2️⃣ TANG Zhan 湯棧 | 火鍋 / 麻香鍋 | $500–$800 | 麻香鍋、麻油雞鍋 | 情侶、朋友、文青聚會 | 文青風火鍋代表,湯底濃郁卻不膩、環境質感佳 |
3️⃣ NINI 尼尼臺中店 | 義式料理 / 早午餐 | $400–$700 | 松露燉飯、薄餅披薩 | 姊妹聚會、家庭聚餐 | 採光好、氣氛輕鬆,餐點份量實在 |
4️⃣ 加分100%浜中特選昆布鍋物 | 北海道鍋物 | $400–$700 | 牛奶昆布鍋、海鮮拼盤 | 家庭聚餐、親子用餐 | 湯底細緻清爽、CP值高、服務親切 |
5️⃣ 印月餐廳 | 中式創意料理 / 宴會餐廳 | $800–$1500 | 松露雞湯、蒜香牛肋條 | 商務宴客、家庭聚餐 | 菜色融合創意與傳統,氣氛高雅 |
6️⃣ KoDō 和牛燒肉 | 高檔日式燒肉 | $1200–$2000 | 冷藏肋眼、壽喜燒套餐 | 節慶慶祝、燒肉控 | 儀式感十足、肉質極佳、服務細膩 |
7️⃣ 永心鳳茶 | 臺式茶館 / 早午餐 | $300–$500 | 炸雞腿飯、鳳茶甜點 | 姊妹下午茶、親子餐聚 | 茶香融入料理,氛圍優雅放鬆 |
8️⃣ 三希樓 | 江浙菜 / 港點 | $600–$900 | 小籠包、東坡肉 | 家庭聚餐、長輩慶生 | 火候精準、味道穩定,傳統中菜代表 |
9️⃣ 一笈壽司 | 日式壽司 / 無菜單料理 | $1000–$1500 | 握壽司套餐、生魚片 | 日料控、紀念日用餐 | 食材新鮮、主廚手藝細膩,私密高雅 |
🔟 茶六燒肉堂 | 和牛燒肉 / 精緻套餐 | $700–$1000 | 厚切牛舌、和牛拼盤 | 家庭、情侶、朋友聚餐 | 品質穩定、氣氛熱絡,年輕族群最愛 |
一頭牛日式燒肉|炭香濃郁的和牛饗宴,約會聚餐首選
走在公益路上,很難不被 一頭牛日式燒肉 的木質外觀吸引。低調卻不失質感的門面,搭配昏黃燈光與暖色調的內裝,讓人一進門就感受到濃濃的日式職人氛圍。店內空間不大,但桌距規劃得宜,每桌皆設有獨立排煙設備,烤肉時完全不怕滿身油煙味。
餐點特色
一頭牛的靈魂,絕對是他們招牌的「三國和牛拼盤」。
嚴選的和牛部位,共八個部位、十樣餐點,讓人能從牛頭一路品嘗到牛尾。
油花分布均勻、切片厚薄恰好,經過炭火烤炙後香氣四溢,焦香與油脂在口中交融,入口即化的滑順感令人難忘。
值得一提的是,一頭牛的菜單設計十分彈性
想要一次體驗完整套餐也可以,偏好客製口味則能自由單點組合,不受套餐限制,想吃什麼就點什麼。
而且每桌都能選擇「自行燒烤」或「專人代烤」服務,烤肉管家的火侯掌握與節奏讓整體體驗更輕鬆愉快。
除了主角和牛,旬味野炊飯 與 主廚冰淇淋 也是隱藏版亮點,前者粒粒分明、香氣撲鼻;後者以香草與焙茶為基底,隨季節更換口味,完美收尾。整體服務親切熱情,特別是壽星還能享有 生日畫盤驚喜,讓慶祝時刻更添儀式感。
用餐體驗
整體節奏掌握得非常好。店員會在你剛想烤下一片肉時貼心遞上夾子、幫忙換烤網,讓人完全不用分心。整場用餐過程就像一場表演,從視覺、嗅覺到味覺都被滿足。
如果是第一次約會或慶祝特別節日,這裡的氛圍既不尷尬又不吵鬧,是營造氣氛的理想選擇。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 光線柔和、氣氛沉穩,極具日式質感 |
口味表現 | ⭐⭐⭐⭐⭐ | A5和牛入口即化、炭香迷人 |
CP值 | ⭐⭐⭐⭐ | 價格略高但品質與服務對得起價位 |
再訪意願 | ⭐⭐⭐⭐⭐ | 適合慶祝、約會,一吃就難忘的燒肉店 |
地址:408臺中市南屯區公益路二段162號
電話:04-23206800
小結語
一頭牛日式燒肉不僅是「吃肉的地方」,更像是一場五感盛宴。從進門那一刻到最後一道甜點,都能感受到他們對細節的用心。
若要在公益路找一間能讓人「邊吃邊微笑」的燒肉店,一頭牛 絕對值得列入你的必訪清單。
TANG Zhan 湯棧|文青系火鍋代表,麻香湯底與視覺美感並重
在公益路這條美食戰線上,TANG Zhan 湯棧 是讓人一眼就會想走進去的那一種。
黑灰調的現代外觀、搭配微霧玻璃與招牌的「湯棧」燈字,呈現出一種低調的時尚感。
店內設計延續品牌主題,以「湯」為靈魂打造整體體驗,從裝潢到香氣,都有濃厚的溫潤氣息。
餐點特色
湯棧最有名的當然是它的「麻香鍋」。
湯底以雞骨與多種辛香料慢熬,香氣濃郁卻不嗆辣,入口後會在喉間留下柔和的花椒香。
「招牌麻油雞鍋」與「黃金牛奶鍋」也是人氣選項,特別是在冬天,溫潤的湯底配上滑嫩肉片,讓人每一口都覺得暖心。
他們的「滷肉飯」和「香蔥豆腐皮」更是許多老客人必點的靈魂配角,簡單卻有記憶點。
用餐體驗
整體氛圍比一般火鍋店更有質感。
桌距寬敞、燈光柔和,店員動作俐落又親切。即使客滿,也不會感覺吵雜或壓迫。
不論是一個人想靜靜吃鍋、或是朋友聚餐,湯棧都能給你剛剛好的距離與溫度。
值得一提的是,上菜速度快、湯底續湯毫不手軟,細節服務到位。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 文青感強、光線柔和,是拍照好選擇 |
口味表現 | ⭐⭐⭐⭐☆ | 麻香濃郁、湯頭層次豐富、不油不膩 |
CP值 | ⭐⭐⭐⭐ | 份量足、價格中等偏上 |
再訪意願 | ⭐⭐⭐⭐⭐ | 冬天或雨天時會特別想再訪的火鍋店 |
地址:408臺中市南屯區公益路二段248號
電話:04-22580617
官網:https://www.facebook.com/TangZhan.tw/
小結語
TANG Zhan 湯棧 把傳統火鍋做出新的樣貌
保留臺式鍋物的溫度,又結合現代風格與細節服務,讓吃鍋這件事變得更有品味。
如果你想找一間兼具「好吃、好拍、好放鬆」的火鍋店,湯棧會是公益路上最有風格的選擇之一。
NINI 尼尼臺中店|明亮寬敞的義式早午餐天堂
如果說前兩間是肉食愛好者的天堂,那 NINI 尼尼臺中店 絕對是想放鬆、聊聊天的好地方。餐廳外觀以白色系與大片玻璃窗為主,陽光灑進室內,讓人一踏入就有種度假般的輕盈感。假日早午餐時段特別熱鬧,建議提早訂位。
餐點特色
NINI 的菜單融合義式與臺灣人口味,選擇多樣且份量十足。主打的 松露燉飯 濃郁卻不膩口,米芯保留微Q口感;而 香蒜海鮮義大利麵 則以新鮮白蝦、花枝與淡菜搭配微辣蒜香,口感層次豐富。
此外,他們的薄餅披薩相當受歡迎,餅皮薄脆、餡料新鮮,是三五好友共享的好選擇。
用餐體驗
店內氣氛輕鬆不拘謹,無論是一個人帶電腦工作、或朋友聚餐,都能找到舒服角落。餐點上桌速度穩定,服務人員態度親切、補水與收盤都非常主動。整體節奏讓人覺得「時間變慢了」,很適合想遠離忙碌日常的人。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 採光好、座位寬敞,氛圍悠閒舒適 |
口味表現 | ⭐⭐⭐⭐ | 義式風味穩定,燉飯與披薩表現亮眼 |
CP值 | ⭐⭐⭐⭐ | 價位合理、份量實在 |
再訪意願 | ⭐⭐⭐⭐ | 適合假日早午餐或輕鬆聚會再訪 |
地址:40861臺中市南屯區公益路二段18號
電話:04-23288498
小結語
NINI 尼尼臺中店是一間能讓人放下手機、慢慢吃飯的餐廳。餐點不追求浮誇,而是以「剛剛好」的份量與風味,陪伴每個平凡午後。
如果你在找一間能邊吃邊聊天、拍照也漂亮的早午餐店,NINI 會是你在公益路上最不費力的幸福選擇。
加分100%浜中特選昆布鍋物|平價卻用心的湯頭系火鍋,家庭聚餐好選擇
在公益路這條高質感餐廳林立的戰場上,加分100%浜中特選昆布鍋物 走的是截然不同的路線。它沒有浮誇的裝潢、也沒有高價位的套餐,但靠著實在的湯頭與親切的服務,默默吸引許多回頭客。每到用餐時間,總能看到家庭或情侶三兩成群地圍著鍋邊聊天。
餐點特色
主打 北海道浜中昆布湯底,湯頭清澈卻不單薄,越煮越能喝出海藻與柴魚的自然香氣。
我這次點的是「牛奶昆布鍋」,入口時奶香與昆布香完美融合,搭配新鮮的牛五花肉片,滑順又不膩。
菜盤走健康取向,蔬菜比例高,連玉米、南瓜、豆皮都能吃出甜味;附餐的烏龍麵Q彈有嚼勁,吃完十分有飽足感。
用餐體驗
整體氛圍偏家庭取向,桌距寬敞、座位舒適,帶小孩來也不覺擁擠。店員態度親切,補湯、收盤都很勤快,給人一種「被照顧著」的安心感。
最難得的是,即使價位不高,食材新鮮度仍維持得很好,能感受到店家對品質的堅持。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐ | 簡約乾淨、座位舒適,適合家庭聚餐 |
口味表現 | ⭐⭐⭐⭐☆ | 湯頭清爽細緻、奶香與昆布香交融自然 |
CP值 | ⭐⭐⭐⭐⭐ | 份量足、價位親民,整體表現超值 |
再訪意願 | ⭐⭐⭐⭐☆ | 想吃鍋又不想花太多時的首選 |
地址:403臺中市西區公益路288號
電話:0910855180
小結語
加分100%浜中特選昆布鍋物是一間「不浮誇、但會讓人想再訪」的火鍋店。它不追求豪華擺盤,而是用最簡單的湯頭與新鮮食材,傳遞出家常卻不平凡的溫度。
如果你想在公益路找一間可以放心帶家人一起吃的鍋物店,這裡絕對會讓人感到「加分」不少。
印月餐廳|中式料理的藝術演繹,宴客與家庭聚會首選
說到臺中公益路的中式料理代表,印月餐廳 絕對是榜上有名。這間開業多年的餐廳以「中菜西吃」的概念聞名,把傳統中式料理以現代手法重新詮釋。從建築外觀到餐具擺設,每個細節都散發著低調的典雅氣息。
走進印月,挑高的空間、柔和的燈光與木質桌椅構成沉穩的氛圍。
不論是家庭聚餐、商務宴客,還是節日慶祝,都能找到恰到好處的格調。
餐點特色
印月最令人印象深刻的是他們將傳統中菜融入創意手法。
這次我品嚐的「松露雞湯」香氣濃郁、層次分明,一口下去既有中式的溫潤感,又帶出西式松露的奢華香氣。
「蒜香牛肋條」則是另一道招牌菜,外酥內嫩、油香十足,咬下去肉汁在口中散開,搭配特調醬汁非常過癮。
此外,他們的創意港點如「麻辣小籠包」與「金沙流沙包」也深受年輕客群喜愛,既保留經典又玩出新意。
用餐體驗
服務方面完全對得起餐廳的高級定位。從入座、點餐到上菜節奏,都拿捏得恰如其分。每道菜都會有服務人員細心介紹食材與吃法,讓人感受到「被款待」的尊榮感。
雖然價位偏中高,但在這樣的氛圍與品質下,物有所值。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 典雅寬敞、氣氛沈穩,宴客首選 |
口味表現 | ⭐⭐⭐⭐⭐ | 每道菜都有層次與記憶點,融合創意與傳統 |
CP值 | ⭐⭐⭐⭐ | 價位偏高但品質穩定 |
再訪意願 | ⭐⭐⭐⭐☆ | 節慶或招待長輩時會再次選擇 |
地址:408臺中市南屯區公益路二段818號
電話:0422511155
小結語
印月餐廳是一間「不只吃飯,更像品味生活」的地方。
它成功地讓中式料理不再只是圓桌菜,而是能展現質感、講究細節的美食體驗。
若你在找一間能同時滿足味蕾與體面的餐廳,印月 絕對是公益路上的不敗經典。
KoDō 和牛燒肉|極致職人精神,專為儀式感與頂級味覺而生
若要形容 KoDō 和牛燒肉 的用餐體驗,一句話足以總結——「像在欣賞一場關於肉的表演」。
隱身在公益路一隅,KoDō 的外觀低調典雅,店內以深色木質調與間接照明營造出沉穩氛圍。
從踏入店門那一刻開始,服務人員的態度、動線、聲音控制,全都精準到位,讓人彷彿走進日式劇場。
餐點特色
這裡主打 日本A5和牛冷藏肉,以「精切厚燒」的方式呈現。
我點的「壽喜燒風和牛套餐」是本日最驚艷的一道——服務人員現場以鐵鍋輕煎,再淋上特製壽喜燒醬汁,香氣瞬間瀰漫整桌。
肉片油花細緻、入口即化,搭配生蛋液後更添柔滑口感。
另一道「冷藏肋眼心」則保留了和牛的彈性與甜度,每一口都能感受到油脂與炭火交織出的層次。
即使是配角如「季節小菜」與「日式和風飯」也毫不馬虎,整體呈現出高級卻不造作的平衡。
用餐體驗
KoDō 的最大特色是「儀式感」。
每位店員的動作都有節奏,從擺盤、火候、換網到講解,都像排練過無數次的演出。
在這裡用餐,會自然地放慢速度,專注於每一口肉帶來的細膩變化。
特別推薦搭配店內的紅酒或日本威士忌,風味更加圓潤。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 私密高雅、光線柔和,極具儀式感 |
口味表現 | ⭐⭐⭐⭐⭐ | 和牛品質極高、火候掌控完美 |
CP值 | ⭐⭐⭐☆ | 價位高,但每一口都吃得出誠意 |
再訪意願 | ⭐⭐⭐⭐☆ | 節慶、紀念日值得再次造訪 |
地址:403臺中市西區公益路260號
電話:0423220312
官網:https://www.facebook.com/kodo2018/
小結語
KoDō 和牛燒肉不是日常餐廳,而是一場體驗。
從環境、服務到食材,每個細節都讓人感受到對「完美」的執著。
若你想在公益路找一間能讓人留下深刻印象、適合紀念日慶祝的餐廳,KoDō 絕對是值得收藏的一次「味覺儀式」。
永心鳳茶|在茶香裡用餐的優雅時光,臺味早午餐的新詮釋
走進 永心鳳茶公益店,彷彿進入一間有氣質的茶館。
柔和的燈光灑在復古綠牆上,搭配大理石桌面與金色餐具,整體氛圍既典雅又帶有一絲文青氣息。
這裡不只是喝茶的地方,更像是把「臺灣味」以早午餐的形式重新演繹。
餐點特色
永心鳳茶的餐點結合中式靈魂與西式擺盤,無論是「炸雞腿飯」還是「紅玉紅茶拿鐵」,都能讓人感受到熟悉卻不平凡的味道。
炸雞腿外酥內嫩,搭配自製酸菜與溏心蛋,鹹香中帶著層次感。
「鳳茶甜點拼盤」則以茶為靈魂——伯爵茶蛋糕、烏龍茶奶酪、紅茶雪酥,每一口都有細緻的香氣變化。
最特別的是他們的茶飲,從臺灣高山紅茶到金萱冷泡茶,每一壺都現泡現倒,香氣清雅。
對我而言,這不只是一頓飯,更是一段放鬆的午後儀式。
用餐體驗
店內服務人員態度溫和,對茶品介紹詳盡。上餐節奏剛好,不急不徐。
整體氛圍很「耐坐」,許多客人吃完正餐後仍會續點一壺茶聊天。
音樂輕柔、光線柔和,是那種可以靜靜待上兩小時的地方。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 優雅放鬆、裝潢細緻,是拍照與休憩首選 |
口味表現 | ⭐⭐⭐⭐⭐ | 茶香融入料理,整體風味溫潤平衡 |
CP值 | ⭐⭐⭐⭐ | 餐點份量適中、價位合理 |
再訪意願 | ⭐⭐⭐⭐⭐ | 想放鬆、聊天、喝好茶時會立刻想到這裡 |
地址:40360臺中市西區公益路68號三樓(勤美誠品)
電話:0423221118
小結語
永心鳳茶讓人重新定義「臺味」。
它不走傳統路線,而是把熟悉的元素以更細緻、更現代的方式呈現。
無論是姊妹下午茶、親子餐聚,或是想一個人沉澱片刻,永心鳳茶 都是一處能讓人慢下來、品味生活的好地方。
三希樓|老饕級江浙功夫菜,穩重又帶人情味的中式饗宴
位於公益路上的 三希樓 是許多臺中老饕的口袋名單。
它沒有浮誇的裝潢,卻有一種低調的自信。從大門進入,就能聞到淡淡的醬香與蒸氣味,那是正宗江浙菜的靈魂。
整體裝潢以深木色為主,搭配圓桌與包廂設計,非常適合家庭聚餐或請客宴會。
餐點特色
三希樓的菜色以 江浙與港式料理 為主,兼顧傳統與現代風味。
我這次點了「東坡肉」與「蝦仁炒飯」,兩道都展現了主廚深厚的火候功力。
東坡肉油亮卻不膩,入口即化、鹹甜交織;蝦仁炒飯粒粒分明、香氣十足,每一口都吃得到鑊氣。
此外,「小籠包」皮薄多汁,是幾乎每桌必點的招牌;港點類如「金牌流沙包」與「干貝燒賣」也都表現穩定。
用餐體驗
三希樓的服務給人一種老派但貼心的感覺。
店員上菜節奏掌握得很好,會主動幫忙分菜、收盤,態度沉穩而不打擾。
最讓我印象深刻的是,這裡的客群非常多元——有帶長輩的家庭、公司聚餐,也有情侶共度節日,卻都能在同一空間裡感到自在。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐ | 傳統圓桌設計、氛圍穩重舒適 |
口味表現 | ⭐⭐⭐⭐⭐ | 火候精準、味道濃郁,經典不失真 |
CP值 | ⭐⭐⭐⭐ | 價格合理、份量足,適合多人共享 |
再訪意願 | ⭐⭐⭐⭐ | 家庭聚餐與宴客的安心首選 |
地址:408臺中市南屯區公益路二段95號
電話:0423202322
官網:https://www.sanxilou.com.tw/
小結語
三希樓是一間「吃得出功夫」的餐廳。
它不追求創新,而是用穩定的味道與真材實料,抓住每一位饕客的胃。
如果你想在公益路上找一間能兼顧長輩口味、氣氛又不拘謹的中餐廳,三希樓 絕對是最穩妥的選擇。
一笈壽司|低調奢華的無菜單日料,職人手藝詮釋旬味極致
在熱鬧的公益路上,一笈壽司 低調得幾乎不顯眼。
外觀簡約,沒有華麗招牌,只有小小的木質門面與柔黃燈光。
一推開門,迎面而來的是日式杉木香氣與寧靜的氛圍,吧檯座位整齊排列,主廚站在中間,彷彿舞臺上的演出者。
餐點特色
一笈壽司採 Omakase(無菜單料理) 形式,每一餐都由主廚根據當日食材設計。
我這次選擇中價位套餐(約 $1200),共十多道料理,從前菜、小鉢、刺身、握壽司到甜點一氣呵成。
「比目魚鰭邊握」是整場最驚豔的瞬間——主廚以火槍輕炙,油脂瞬間釋放,入口後化成柔滑香氣。
「甜蝦海膽軍艦」則完美展現鮮度與層次感,海膽甘甜、甜蝦緊實。
搭配主廚親自調配的醬汁,每一口都像在品嚐季節的節奏。
用餐體驗
整場用餐約90分鐘,節奏緩慢但沉穩。
主廚會邊料理邊與客人互動,介紹魚種產地與食材處理方式。
雖然整體空間不大,但氣氛極佳——柔和的音樂、清酒的香氣、刀刃切魚時的聲音,讓人完全沉浸其中。
特別喜歡他們最後的甜點「焙茶奶酪」,收尾清爽優雅,為整場體驗畫下完美句點。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐⭐ | 私密安靜、燈光柔和,儀式感十足 |
口味表現 | ⭐⭐⭐⭐⭐ | 食材新鮮、刀工精準、層次分明 |
CP值 | ⭐⭐⭐⭐ | 以品質與體驗來說,價位合理 |
再訪意願 | ⭐⭐⭐⭐⭐ | 適合紀念日或想犒賞自己時再訪 |
地址:408臺中市南屯區公益路二段25號
電話:0423206368
官網:https://www.facebook.com/YIJI.sushi/
小結語
一笈壽司是一間真正讓人「放慢呼吸」的餐廳。
這裡沒有多餘擺盤,也不靠噱頭,而是以主廚對食材的尊重與技術堆疊出一場味覺饗宴。
若你想在公益路體驗日本料理最純粹的精神,一笈壽司 絕對值得你預約、靜靜期待。
茶六燒肉堂|人氣爆棚的和牛燒肉聖地,肉香與幸福感同時滿分
若要票選公益路上「最難訂位」的餐廳,茶六燒肉堂 絕對名列前茅。
不管平日或假日,用餐時段幾乎一位難求。外觀以木質格柵搭配大面玻璃設計,呈現出年輕又有質感的風格。店內空間明亮、桌距適中,播放著輕快的音樂,整體氛圍熱鬧中帶點高級感,是許多年輕人聚餐、慶生的首選地。
餐點特色
茶六主打 和牛燒肉套餐,價格約落在 $700–$1000 間,份量與品質兼具。
我這次點的是「厚切牛舌套餐」,肉片厚實彈牙,略帶脆感,搭配鹽蔥提味剛剛好。
另一道「和牛拼盤」也相當受歡迎,油花分布均勻、香氣濃郁,輕烤幾秒即可入口即化。
套餐附餐部分也相當用心:沙拉新鮮、味噌湯濃郁,最後還有一份「茶香冰淇淋」作結尾,香氣清爽,完美收尾。
用餐體驗
茶六的服務效率相當高。店員親切、換網勤快、補水速度快,整場用餐流程流暢無壓力。
雖然客人很多,但環境維持得乾淨整潔,動線規劃良好。
最令人印象深刻的是他們的 整體節奏拿捏得剛剛好 ——餐點上桌快、氣氛熱絡,卻不會讓人覺得匆忙。
不論是朋友聚會、家庭聚餐,甚至是情侶約會,都能找到各自的樂趣。
綜合評分
評分項目 | 分數(滿分5分) | 評語 |
環境氛圍 | ⭐⭐⭐⭐ | 明亮活潑、氣氛熱絡但不嘈雜 |
口味表現 | ⭐⭐⭐⭐⭐ | 肉質穩定、調味自然、甜點有記憶點 |
CP值 | ⭐⭐⭐⭐⭐ | 價格實在、份量足,是高回訪率代表 |
再訪意願 | ⭐⭐⭐⭐⭐ | 聚會、慶生都會再次選擇的燒肉店 |
地址:403臺中市西區公益路268號
電話:0423281167
官網:https://inline.app/booking/-L93VSXuz8o86ahWDRg0:inline-live-karuizawa/-LUYUEIOYwa7GCUpAFWA
小結語
茶六燒肉堂用「穩定品質+輕奢氛圍」抓住了臺中年輕族群的心。
不論是第一次約會還是老朋友重聚,都能在這裡找到屬於燒肉的快樂節奏。
若你在公益路只想挑一家「保證不踩雷」的燒肉店,茶六燒肉堂 絕對是首選。
吃完10家公益路餐廳後的心得與結語
吃完這十家餐廳後,臺中公益路不只是一條美食街,而是一段生活風景線。
有的餐廳講究細膩與儀式感,像 一頭牛日式燒肉 與 一笈壽司,讓人感受到食材最純粹的美好
有的則以親切與溫度打動人心,像 加分昆布鍋物、永心鳳茶,讓人明白吃飯不只是為了飽足,而是一種被照顧的幸福。
而像茶六燒肉堂、TANG Zhan 湯棧 這類人氣名店,則用穩定的品質與熱絡的氛圍,成為許多臺中人心中「想吃肉就去那裡」的代名詞。
這十家店,構成了公益路最動人的縮影
有華麗的,也有溫柔的;有傳統的,也有創新的。
每一家都在自己的風格裡發光,讓人吃到的不只是料理,而是一種生活的溫度與節奏。
對我而言,這不僅是一場美食旅程,更是一趟關於「臺中味道」的回憶之旅。
FAQ:關於臺中公益路美食常見問題
Q1:公益路哪一區的餐廳最集中?
最熱鬧的區段大約在「公益路與黎明路口」一帶,這裡聚集了許多知名餐廳,從高級燒肉到早午餐通通有。
像 一頭牛日式燒肉、TANG Zhan 湯棧、茶六燒肉堂 都在這附近,交通方便、停車也相對容易。
Q2:需要提前訂位嗎?
公益路的熱門餐廳幾乎都建議 提早3~5天訂位,尤其是假日或節慶期間。
特別是 一頭牛日式燒肉、KoDō 和牛燒肉、一笈壽司 這幾家,若臨時前往幾乎很難有位。
最後的話
若要用一句話形容這趟美食之旅,我會說:
「在公益路,吃飯不是選擇,而是一種享受。」
這條路上的每一次用餐,都像一段城市裡的小旅行。
下次當你不確定想吃什麼時,不妨沿著公益路走一圈,或許下一家,正好就是你新的最愛。
三希樓座位舒適嗎?
如果你也和我一樣喜歡用味蕾探索一座城市,那就把這篇公益路美食攻略收藏起來吧。TANG Zhan 湯棧團體宴客合適嗎?
無論是約會、慶生、家庭聚餐,或只是想犒賞一下辛苦的自己——這條路上永遠會有一間剛剛好的餐廳在等你。一頭牛日式燒肉長輩會喜歡嗎?
下一餐,不妨從這10家開始。三希樓員工聚會夠氣派嗎?
打開手機、約上朋友,讓公益路成為你生活裡最容易抵達的小確幸。三希樓小資族值得嗎?
如果你有私心愛店,也歡迎留言分享,TANG Zhan 湯棧適合聚餐嗎?
你的推薦,可能讓我下一趟美食旅程變得更精彩。一笈壽司尾牙聚餐表現如何?
Human chromosome 8 sequencing researcher Glennis Logsdon at work in a genome science lab at the University of Washington School of Medicine in Seattle. She led a study published April 7, 2021 in Nature on the structure, function and evolution of the chromosome’s complete assembly. Credit: Kendra Hoekzema This full assembly may contain clues to ape and human divergence; certain immune, brain and heart disorders; and other biomedical questions. The full assembly of human chromosome 8 is reported in Nature. While on the outside this chromosome looks typical, being neither short nor long or distinctive, its DNA content and arrangement are of interest in primate and human evolution, in several immune and developmental disorders, and in chromosome sequencing structure and function generally. This linear assembly is a first for a human autosome — a chromosome not involved in sex determination. The entire sequence of chromosome 8 is 146,259,671 bases. The completed assembly fills in the gap of more than 3 million bases missing from the current reference genome. The Nature paper is titled “The structure, function, and evolution of a complete chromosome 8.” One of several intriguing characteristics of chromosome 8 is a fast-evolving region, where the mutation rate appears to be highly accelerated in humans and human-like species, in contrast to the rest of the human genome. While chromosome 8 offers some insights into evolution and human biology, the researchers point out that the complete assembly of all human chromosomes would be necessary to acquire a fuller picture. An international team of scientists collaborated on the chromosome 8 assembly and analysis. The lead author of the paper is Glennis Logsdon, a postdoctoral fellow in genome sciences at the University of Washington School of Medicine in Seattle. The senior author is Evan Eichler, professor of genome sciences at the UW School of Medicine and a Howard Hughes Medical Institute investigator. His group is noted for developing better methods for sequencing DNA and for analyzing mutational trends that may be important in research on primate evolution and neurological disorders. In addition to the human chromosome 8 assembly, the project researchers also created high quality draft assemblies of the linking site at the waist of the chromosome, the centromere, in the chimpanzee, orangutan, and macaque. The data allowed the scientists to begin to chart the evolutionary history of the chromosome 8 centromere. Almost like inspecting the depths of a geological site, the researchers observed, on a molecular scale, a layered, mirrored symmetry in how this centromere structure evolved from great ape ancestors. More ancient parts were pushed to the periphery, similar to making room for new material in the middle of a factory production line. Other research institutions involved in the chromosome 8 assembly project include the Development Therapeutics Branch of the National Cancer Institute, the Genome Informatics Section of the National Human Genome Research Institute, the University of Bari, Italy; the Center for Algorithmic Biology at St. Petersburg State University, Russia; University of California, San Diego, Washington University in St. Louis, University of Pittsburgh, and the University of California, Santa Cruz. Data were also generated with Oxford Nanopore Technologies and Pacific Biosciences long-read sequencing to resolve gaps in the telomere-to-telomere, or end-to-end, assembly of the chromosome. Earlier research by a number of scientists had pointed to regions of chromosome 8 as being important both in the normal formation of the brain, as well as to some developmental variations, such as small head size or skull and facial differences. Mutations on this chromosome have also been implicated in some heart defects, certain forms of cancer, premature aging syndromes, immune responses, and immune disorders like psoriasis and Crohn’s disease. However, the full sequencing of this and most other human chromosomes could not be attempted until recently because the technology and methods to wade through large areas of duplication and identical repeats had not become available. Putting together the puzzle accurately from short reads of DNA, for instance, would have been extremely difficult. The chromosome 8 assembly achievement benefited from advances in long-read technologies, as well as from the availability of DNA material from hydatidiform moles. These are rare, abnormal growths in the placenta. The full sequencing of chromosome 8 now provides information that might improve, for example, the understanding of what predisposes specific parts of the chromosome’s DNA to microdeletions suspected in certain forms of developmental delay, brain and heart malformations, and autoimmune problems. The researchers were also able to obtain more information on a part of chromosome 8 that contains some of the greatest copy-number variability among people. The repeat unit can vary from 53 to 326 copies. With the chromosome 8 assembly finished, researchers look forward to the world scientific community completing other human chromosome assemblies, and to new challenges in applying what has been learned to further studies of human genome sequencing. Reference: “The structure, function and evolution of a complete human chromosome 8” by Glennis A. Logsdon, Mitchell R. Vollger, PingHsun Hsieh, Yafei Mao, Mikhail A. Liskovykh, Sergey Koren, Sergey Nurk, Ludovica Mercuri, Philip C. Dishuck, Arang Rhie, Leonardo G. de Lima, Tatiana Dvorkina, David Porubsky, William T. Harvey, Alla Mikheenko, Andrey V. Bzikadze, Milinn Kremitzki, Tina A. Graves-Lindsay, Chirag Jain, Kendra Hoekzema, Shwetha C. Murali, Katherine M. Munson, Carl Baker, Melanie Sorensen, Alexandra M. Lewis, Urvashi Surti, Jennifer L. Gerton, Vladimir Larionov, Mario Ventura, Karen H. Miga, Adam M. Phillippy and Evan E. Eichler, 7 April 2021, Nature. DOI: 10.1038/s41586-021-03420-7 The researchers on this study declare no competing financial interests.
A new method can track changes in live cell gene expression over extended periods of time. Based on Raman spectroscopy, the method doesn’t harm cells and can be performed repeatedly. Credit: MIT News; iStock A new MIT-developed method combines Raman spectroscopy with machine learning to noninvasively track gene expression in cells over time. This technique enables detailed study of cellular differentiation and has potential applications in cancer research, developmental biology, and diagnostics. Sequencing all of the RNA in a cell can reveal a great deal of information about that cell’s function and what it is doing at a given point in time. However, the sequencing process destroys the cell, making it difficult to study ongoing changes in gene expression. An alternative approach developed at MIT could enable researchers to track such changes over extended periods of time. The new method, which is based on a noninvasive imaging technique known as Raman spectroscopy, doesn’t harm cells and can be performed repeatedly. Using this technique, the researchers showed that they could monitor embryonic stem cells as they differentiated into several other cell types over several days. This technique could enable studies of long-term cellular processes such as cancer progression or embryonic development, and one day might be used for diagnostics for cancer and other diseases. “With Raman imaging, you can measure many more time points, which may be important for studying cancer biology, developmental biology, and a number of degenerative diseases,” says Peter So, a professor of biological and mechanical engineering at MIT, director of MIT’s Laser Biomedical Research Center, and one of the authors of the paper. Koseki Kobayashi-Kirschvink, a postdoc at MIT and the Broad Institute of Harvard and MIT, is the lead author of the study, which was published recently in the journal Nature Biotechnology. The paper’s senior authors are Tommaso Biancalani, a former Broad Institute scientist; Jian Shu, an assistant professor at Harvard Medical School and an associate member of the Broad Institute; and Aviv Regev, executive vice president at Genentech Research and Early Development, who is on leave from faculty positions at the Broad Institute and MIT’s Department of Biology. Imaging Gene Expression Raman spectroscopy is a noninvasive technique that reveals the chemical composition of tissues or cells by shining near-infrared or visible light on them. MIT’s Laser Biomedical Research Center has been working on biomedical Raman spectroscopy since 1985, and recently, So and others in the center have developed Raman spectroscopy-based techniques that could be used to diagnose breast cancer or measure blood glucose. However, Raman spectroscopy on its own is not sensitive enough to detect signals as small as changes in the levels of individual RNA molecules. To measure RNA levels, scientists typically use a technique called single-cell RNA sequencing, which can reveal the genes that are active within different types of cells in a tissue sample. In this project, the MIT team sought to combine the advantages of single-cell RNA sequencing and Raman spectroscopy by training a computational model to translate Raman signals into RNA expression states. “RNA sequencing gives you extremely detailed information, but it’s destructive. Raman is noninvasive, but it doesn’t tell you anything about RNA. So, the idea of this project was to use machine learning to combine the strength of both modalities, thereby allowing you to understand the dynamics of gene expression profiles at the single cell level over time,” Kobayashi-Kirschvink says. To generate data to train their model, the researchers treated mouse fibroblast cells, a type of skin cell, with factors that reprogram the cells to become pluripotent stem cells. During this process, cells can also transition into several other cell types, including neural and epithelial cells. Using Raman spectroscopy, the researchers imaged the cells at 36 time points over 18 days as they differentiated. After each image was taken, the researchers analyzed each cell using single molecule fluorescence in situ hybridization (smFISH), which can be used to visualize specific RNA molecules within a cell. In this case, they looked for RNA molecules encoding nine different genes whose expression patterns vary between cell types. This smFISH data can then act as a link between Raman imaging data and single-cell RNA sequencing data. To make that link, the researchers first trained a deep-learning model to predict the expression of those nine genes based on the Raman images obtained from those cells. Then, they used a computational program called Tangram, previously developed at the Broad Institute, to link the smFISH gene expression patterns with entire genome profiles that they had obtained by performing single-cell RNA sequencing on the sample cells. The researchers then combined those two computational models into one that they call Raman2RNA, which can predict individual cells’ entire genomic profiles based on Raman images of the cells. Tracking Cell Differentiation The researchers tested their Raman2RNA algorithm by tracking mouse embryonic stem cells as they differentiated into different cell types. They took Raman images of the cells four times a day for three days, and used their computational model to predict the corresponding RNA expression profiles of each cell, which they confirmed by comparing it to RNA sequencing measurements. Using this approach, the researchers were able to observe the transitions that occurred in individual cells as they differentiated from embryonic stem cells into more mature cell types. They also showed that they could track the genomic changes that occur as mouse fibroblasts are reprogrammed into induced pluripotent stem cells, over a two-week period. “It’s a demonstration that optical imaging gives additional information that allows you to directly track the lineage of the cells and the evolution of their transcription,” So says. The researchers now plan to use this technique to study other types of cell populations that change over time, such as aging cells and cancerous cells. They are now working with cells grown in a lab dish, but in the future, they hope this approach could be developed as a potential diagnostic for use in patients. “One of the biggest advantages of Raman is that it’s a label-free method. It’s a long way off, but there is potential for the human translation, which could not be done using the existing invasive techniques for measuring genomic profiles,” says Jeon Woong Kang, an MIT research scientist who is also an author of the study. Reference: “Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA” by Koseki J. Kobayashi-Kirschvink, Charles S. Comiter, Shreya Gaddam, Taylor Joren, Emanuelle I. Grody, Johain R. Ounadjela, Ke Zhang, Baoliang Ge, Jeon Woong Kang, Ramnik J. Xavier, Peter T. C. So, Tommaso Biancalani, Jian Shu and Aviv Regev, 10 January 2024, Nature Biotechnology. DOI: 10.1038/s41587-023-02082-2 The research was funded by the Japan Society for the Promotion of Science Postdoctoral Fellowship for Overseas Researchers, the Naito Foundation Overseas Postdoctoral Fellowship, the MathWorks Fellowship, the Helen Hay Whitney Foundation, the U.S. National Institutes of Health, the U.S. National Institute of Biomedical Imaging and Bioengineering, HubMap, the Howard Hughes Medical Institute, and the Klarman Cell Observatory.
Alan Baik is part of the team in Isha Jain’s lab at Gladstone Institutes that uncovered why high levels of oxygen can cause lasting problems in humans. Credit: Michael Short/Gladstone Institutes Scientists have discovered why elevated levels of oxygen can result in enduring health issues in humans. When it comes to oxygen, you can have too much of a good thing. Breathing air with oxygen levels higher than the standard 21 percent found in Earth’s atmosphere can lead to organ damage, seizures, and even death in both humans and animals. This is known as oxygen toxicity, or hyperoxia, and occurs when there is an excess of oxygen beyond the body’s needs. While scientists have been aware of this phenomenon, they have mostly relied on speculation to understand the underlying mechanisms of oxygen toxicity until now. A recent study by Gladstone Institutes has revealed how excessive oxygen levels alter certain iron and sulfur-containing proteins within our cells, similar to the process of iron rusting. As a result, these “rusty” proteins trigger a chain reaction that causes damage to cells and tissues. The research, which has been published in the journal Molecular Cell, shed light on the implications for conditions like heart attacks and sleep apnea. “This study allowed us to put together a very specific timeline for what happens in hyperoxia,” says Gladstone Assistant Investigator Isha Jain, PhD, senior author of the new study. “The results weren’t at all what we were expecting, but it’s very interesting and exciting to now know how this sequence of events unfolds.” An Understudied Question At high levels, oxygen is toxic to every form of life, from bacteria and plants to animals and people. Of course, not enough oxygen is also fatal; there’s an intermediate, “Goldilocks” amount under which most life on Earth thrives—not too much and not too little. While clinicians have long studied the details of how oxygen shortage impacts cells and tissues (for example, in heart attacks and strokes), the effects of excess oxygen have been relatively understudied. “For many years, the medical teaching was that, to a certain degree, more oxygen was better, or at least benign, when treating patients with conditions such as heart attacks,” says Alan Baik, MD, a postdoctoral scholar in Jain’s lab and a cardiologist at UC San Francisco (UCSF). “But there has now been a growing number of clinical studies showing that excess oxygen actually leads to worse outcomes. This motivated us to better understand why excess oxygen can be toxic.” Studies have recently revealed, for instance, that breathing too much supplemental oxygen might be detrimental to heart attack patients and premature infants. Similarly, in obstructive sleep apnea, the sudden bursts of oxygen that follow pauses in breathing have been shown to be a key component of how the disorder increases patients’ risks of chronic health problems. Still, the mechanisms of these effects remained murky. Many researchers assumed that reactive oxygen species—unstable and highly reactive oxygen derivatives that can damage our genome and many molecules in our cells—likely played a role in hyperoxia, but there was little evidence to demonstrate how excess oxygen affects specific enzymes and pathways. How CRISPR Found the Answer Jain’s group—including Baik, postdoctoral fellow Galih Haribowo, Ph.D., and graduate student Kirsten Xuewen Chen, who are co-first authors of the new paper—turned to the genome editing technology CRISPR to test the roles of a variety of genes in hyperoxia. Using CRISPR, the researchers removed, one at a time, more than 20,000 different genes from human cells grown in the lab and then compared the growth of each group of cells at 21 percent oxygen and 50 percent oxygen. “This kind of unbiased screen let us probe the contributions of thousands of different pathways in hyperoxia rather than just focusing on those we already suspected might be involved,” says Jain, who is also an assistant professor of biochemistry at UCSF. “It led us toward molecules that have never been uttered before in the same sentence as oxygen toxicity.” Four molecular pathways stood out in the screen as being involved in the effects of hyperoxia. They related to diverse cellular functions including the repair of damaged DNA, the production of new DNA building blocks, and the generation of cellular energy. Protein Clusters in Common At first, the team couldn’t pinpoint what the four pathways had in common and why they were all impacted by high oxygen levels. It took some molecular sleuthing to discover that each pathway had a critical protein that contained iron atoms connected to sulfur atoms—so-called “iron-sulfur clusters”—in its molecular structure. The researchers went on to show that, in as little as 30 percent oxygen, the iron-sulfur clusters in the four proteins become oxidized—they chemically react with oxygen atoms—and that change causes the proteins to degrade. As a result, cells stop functioning correctly and consume even less oxygen, causing a further increase in oxygen levels in the surrounding tissues. “One important takeaway is that hyperoxia is not impacting cells and tissues solely through reactive oxygen species, as many had assumed,” says Jain. “That means the use of antioxidants—which can combat reactive oxygen species to some degree—is unlikely to be sufficient to prevent oxygen toxicity.” Reference: “Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes” by Alan H. Baik, Augustinus G. Haribowo, Xuewen Chen, Bruno B. Queliconi, Alec M. Barrios, Ankur Garg, Mazharul Maishan, Alexandre R. Campos, Michael A. Matthay and Isha H. Jain, 8 March 2023, Molecular Cell. DOI: 10.1016/j.molcel.2023.02.013 The study was funded by the National Heart, Lung and Blood Institute, CZ Biohub, the Sarnoff Cardiovascular Research Foundation, and UC San Francisco.
RRG455KLJIEVEWWF
KoDō 和牛燒肉份量足夠嗎? 》公益路最值得吃的10家餐廳|實訪整理TANG Zhan 湯棧有雷嗎? 》公益路美食懶人包|台中10大人氣餐廳一次看KoDō 和牛燒肉有雷嗎? 》公益路10家必訪餐廳|吃貨必備指南
